III B.Tech II Semester(R07) Regular \& Supplementary Examinations, April/May 2011 DIGITAL SIGNAL PROCESSING
(Common to Electrical \& Electronics Engineering, Electronics \& Control Engineering, Electronics \& Communication Engineering, Electronics \& Instrumentation Engineering)
Time: 3 hours
Max Marks: 80

Answer any FIVE questions
 All questions carry equal marks

1. (a) Explain the concept Digital Signal Processing.
(b) Sketch following signal and find its energy or power whichever is appropriate.

$$
\mathrm{X}(\mathrm{n})=8(0.5)^{n} \mathrm{u}(\mathrm{n})
$$

2. State and prove following properties of DFS
(a) Linearity
(b) Periodic Convolution
(c) Shift of a sequence
(d) Duality
3. Discuss in detail the concept of decimation in frequency FFT. Also sketch the necessary flow graph for $\mathrm{N}=8$
4. (a) Explain the advantages and disedvantages of Direct form-II realization over Direct form-I.
(b) Realize following system with difference equation in cascade form $y(n)=(3 / 4) y(n-1)-(1 / 8) y(n-2)-x(n)+(1 / 3) x(n-1)$
5. (a) Compare the backward and forward difference methods of digital filter approximations.
(b) Convert following analog filter transfer function into digital filter transfer function using backward difference method $\mathrm{H}(\mathrm{s})=1 /(\mathrm{s}+2)^{2}+9$
6. Design highpass filter using Bartlett window with a cutoff frequency of $1.2 \mathrm{rad} / \mathrm{sec}$ and $\mathrm{N}=9$. Consider

$$
\begin{aligned}
H_{d}\left(e^{j \omega}\right) & =e^{-j a \omega} & & \omega_{c} \leq|\omega| \leq \pi \\
& =0 & & \text { otherwise }
\end{aligned}
$$

Also find $H\left(e^{j \omega}\right)$
7. Sketch the following signals

$$
\begin{aligned}
x_{1}(n) & =n & & n>0 \\
& =0 & & \text { otherwise } \\
x_{2}(n) & =n^{2} & & n>0 \\
& =0 & & \text { otherwise }
\end{aligned}
$$

Also sketch decimated and interpolated version of above signals with factor of ' 2 '.
8. (a) Distinguish between the dual-access RAM and single-access RAM used in the on-chip memory of 5X processor.
(b) Discuss about Von Neumann architecture.

III B.Tech II Semester(R07) Regular \& Supplementary Examinations, April/May 2011 DIGITAL SIGNAL PROCESSING
(Common to Electrical \& Electronics Engineering, Electronics \& Control Engineering,
Electronics \& Communication Engineering, Electronics \& Instrumentation Engineering)
Time: 3 hours
Max Marks: 80
Answer any FIVE questions
All questions carry equal marks

1. (a) Sketch the following signals and describe how they are related
$\begin{aligned} \text { i. } \quad x(n) & =\delta(n) \\ \text { ii. } f(n) & =\operatorname{rect}(n) \\ \text { iii. } g(n) & =\operatorname{tri}(n) \\ \text { iv. } h(n) & =\sin c(n)\end{aligned}$
(b) Explain how an arbitrary sequence is represented in terms of impulses.
2. (a) The first five points of the eight-point DFT of a real-valued sequence are $\left\{0,25,0.125_{-j} 0.3018,0,0.125_{-j} 0.0518,0\right\}$. Determine the remaining three points.
(b) Compute DFT of $\mathrm{x}(\mathrm{n})=\{0,1,2,3\}$
3. (a) What are the twiddle factors ? Explain.
(b) Find DFT of sequence using DIT-FFT $x(\mathrm{n})=\{1 / 2,1 / 2,1 / 2,1 / 20,0,0,0\}$
4. Find inverse z-transform of following z-transforms using partial fraction expansion
(a) $X_{(z)}=1 /\left(1-1.5 z^{-1}+0.5 z^{-2}\right)$
(b) $X_{(z)}=1 /\left(1+z^{-1}\right)(1$
5. Describe the IIR filter design approximation using Bilinear Transformation method. Also sketch the s-plane to z-plane mapping. State its merits and demerits.
6. A low pass filter has the desired frequency response as given by
$H_{d}\left(e^{j \omega}\right)=0 \quad-\pi / 4 \leq \omega \leq \pi / 4$
$=e^{-j 2 \omega} \quad \pi / 4 \leq|\omega| \leq \pi$
Determine the filter coefficients hd(n) if the window function is used is
$w(n)=1 \quad 0 \leq \omega \leq 4$
$=0 \quad$ otherwise Also determine the frequency response $H\left(\mathrm{e}^{j w}\right)$ of the designed filter.
7. Implement a two stage decimator for the following specifications. Sampling rate of the input signal $=20,000 \mathrm{~Hz}$.
$\mathrm{M}=100$
Pass band $=0$ to 50 Hz
Transition band $=50$ to 70 Hz
Pass band ripple $=0.01$
Stop band ripple $=0.002$
8. With respect to TMS320C5X DSP processor, explain the following:
(a) Central Arithmetic Logic Unit
(b) Index Register
(c) Memory - Mapped Registers.

III B.Tech II Semester(R07) Regular \& Supplementary Examinations, April/May 2011 DIGITAL SIGNAL PROCESSING
(Common to Electrical \& Electronics Engineering, Electronics \& Control Engineering, Electronics \& Communication Engineering, Electronics \& Instrumentation Engineering)
Time: 3 hours
Max Marks: 80

Answer any FIVE questions

All questions carry equal marks

1. Check whether the systems described by the following equations are causal
(a) $y(n)=3 x(n-2)+3 x(n+2)$
(b) $y(n)=x(n-1)+a x(n-2)$
(c) $y(n)=x(-n)$
(d) $\mathrm{y}(\mathrm{n})=3 \mathrm{y}^{2}(\mathrm{n}-1)-\mathrm{nx}(\mathrm{n})+4 \mathrm{x}(\mathrm{n}-1)-2 \mathrm{x}(\mathrm{n}+1)$
2. Determine the DFT of a sequence $x(n)=\{1,1,0,0\}$ and check the validity of answer by calculating IDFT.
3. Find the 8 -point DFT of a sequence $x(n)=(1,1,1,1,0,0,0,0)$ using DIT-FFT radix-2 algorithm. Also sketch magnitude and phase of DFT coefficients.
4. State and prove following properties of z-transform
(a) Time reversal
(b) Time convolution
(c) Differentiation in z-domain.
5. Convert the following analog filter transfer function using backward difference method, Impulse invariant method and Bilinear Transformation method. $\mathrm{H}(\mathrm{s})=1 /(\mathrm{s}+0.2)$ Consider $\mathrm{T}=1$ Sec.
6. Give the expression for rectangular window function. Find its frequency response and also sketch its spectrum. Also discuss its features.
7. The spectrum of a signal $x(n)$ is symmetrical triangular pulse with amplitude of ' 2 ' and frequency boundaries are -0.2 to 0.2 . Sketch the spectrum and sketch spectrums of
(a) The zero interpolated signal $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n} / 2)$
(b) The decimated signal $d(n)=x(2 n)$
(c) The signal $\mathrm{g}(\mathrm{n})$ that equals to $\mathrm{x}(\mathrm{n})$ for even n , and zero for odd n
8. Discuss about the following w.r.t programmable DSP's
(a) Bit reversed addressing mode
(b) Indirect addressing
(c) TDM serial port.

III B.Tech II Semester(R07) Regular \& Supplementary Examinations, April/May 2011 DIGITAL SIGNAL PROCESSING
(Common to Electrical \& Electronics Engineering, Electronics \& Control Engineering, Electronics \& Communication Engineering, Electronics \& Instrumentation Engineering)
Time: 3 hours
Max Marks: 80
Answer any FIVE questions
All questions carry equal marks

1. Determine the sequence corresponding to following frequency domain representation.

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =1 & & |\omega| \leq W \text { or }-W \leq \omega \leq W \\
& =0 & & \pi W \leq \omega \leq
\end{aligned}
$$

2. Given two sequences as under
$\mathrm{X}(\mathrm{n})=1 \quad$ for $\mathrm{n}=0$
$=0.5 \quad$ for $\mathrm{n}=1$
$=0 \quad$ else where
$\mathrm{h}(\mathrm{n})=0.5 \quad$ for $\mathrm{n}=0$
$=1 \quad$ for $\mathrm{n}=1$
$=0 \quad$ else where
Compute circular convolution using DFT approach
3. Given the sequences $\mathrm{X}(\mathrm{n})$ and $\mathrm{h}(\mathrm{n})$ below, compute the crrcular convolution using DIT-FFT algorithm
$X(n)=\{1,1,1,1\} \quad h(n)=\{1,0,1,0\}$
4. Determine z-transform, ROC and pole-zero locations of
(a) $\alpha^{n} u(n)$
(b) $-\alpha^{n} u(-n-1)$
5. To meet following frequency specifications find the filter orders of Butter worth and Chybychev $0.8 \leq\left|H\left(e^{j \omega}\right)\right| \geq 1 \quad 0 \leq \omega \leq 0.2 \pi$ $\left|H\left(e^{j \omega}\right)\right| \geq 0.2 \quad 0.3 \pi \leq \omega \leq \pi$
6. (a) Discuss about characteristics linear phase FIR filters.
(b) What are the effects of windowing.
7. Let $x(n)=\{1,2,5-1\}$

Generate and sketch:
(a) $x(3 n)$
(b) Zero interpolated of $x(n)$ i.e. $x(n / 2)$
(c) Step interpolated of $x(n)$ i. e. $x(n / 2)$
(d) Linearly interpolated of $x(n)$ i.e. $x(n / 2)$.
8. Discuss about:
(a) Von Neumann architecture.
(b) Harvard architecture
(c) Modified Harvard architecture.

